Importance of the CNGA4 channel gene for odor discrimination and adaptation in behaving mice.

نویسندگان

  • Kevin R Kelliher
  • Jurgen Ziesmann
  • Steven D Munger
  • Randall R Reed
  • Frank Zufall
چکیده

Odor stimulation of olfactory sensory neurons (OSNs) leads to both the activation and subsequent desensitization of a heteromultimeric cyclic-nucleotide-gated (CNG) channel present in these cells. The native olfactory CNG channel consists of three distinct subunits: CNGA2, CNGA4, and CNGB1b. Mice in which the CNGA4 gene has been deleted display defective Ca(2+)calmodulin-dependent inhibition of the CNG channel, resulting in a striking reduction in adaptation of the odor-induced electrophysiological response in the OSNs. These mutants therefore afford an excellent opportunity to assess the importance of Ca(2+)-mediated CNG channel desensitization for odor discrimination and adaptation in behaving animals. By using an operant conditioning paradigm, we show that CNGA4-null mice are profoundly impaired in the detection and discrimination of olfactory stimuli in the presence of an adapting background odor. The extent of this impairment depends on both the concentration and the molecular identity of the adapting stimulus. Thus, Ca(2+)-dependent desensitization of the odor response in the OSNs mediated by the CNGA4 subunit is essential for normal odor sensation and adaptation of freely behaving mice, preventing saturation of the olfactory signal transduction machinery and extending the range of odor detection and discrimination.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Central role of the CNGA4 channel subunit in Ca2+-calmodulin-dependent odor adaptation.

Heteromultimeric cyclic nucleotide-gated (CNG) channels play a central role in the transduction of odorant signals and subsequent adaptation. The contributions of individual subunits to native channel function in olfactory receptor neurons remain unclear. Here, we show that the targeted deletion of the mouse CNGA4 gene, which encodes a modulatory CNG subunit, results in a defect in odorant-depe...

متن کامل

Loss of CNGB1 protein leads to olfactory dysfunction and subciliary cyclic nucleotide-gated channel trapping.

Olfactory receptor neurons (ORNs) employ a cyclic nucleotide-gated (CNG) channel to generate a receptor current in response to an odorant-induced rise in cAMP. This channel contains three types of subunits, the principal CNGA2 subunit and two modulatory subunits (CNGA4 and CNGB1b). Here, we have analyzed the functional relevance of CNGB1 for olfaction by gene targeting in mice. Electro-olfactog...

متن کامل

The olfactory tubercle encodes odor valence in behaving mice.

Sensory information acquires meaning to adaptively guide behaviors. Despite odors mediating a number of vital behaviors, the components of the olfactory system responsible for assigning meaning to odors remain unclear. The olfactory tubercle (OT), a ventral striatum structure that receives monosynaptic input from the olfactory bulb, is uniquely positioned to transform odor information into beha...

متن کامل

Activation and desensitization of the olfactory cAMP-gated transduction channel: identification of functional modules

Olfactory receptor neurons respond to odor stimulation with a receptor potential that results from the successive activation of cyclic AMP (cAMP)-gated, Ca(2+)-permeable channels and Ca(2+)-activated chloride channels. The cAMP-gated channels open at micromolar concentrations of their ligand and are subject to a Ca(2+)-dependent feedback inhibition by calmodulin. Attempts to understand the oper...

متن کامل

Essential role of the main olfactory system in social recognition of major histocompatibility complex peptide ligands.

Genes of the major histocompatibility complex (MHC), which play a critical role in immune recognition, influence mating preference and other social behaviors in fish, mice, and humans via chemical signals. The cellular and molecular mechanisms by which this occurs and the nature of these chemosignals remain unclear. In contrast to the widely held view that olfactory sensory neurons (OSNs) in th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 100 7  شماره 

صفحات  -

تاریخ انتشار 2003